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Abstract 

Wheeler's conjecture that there might exist a 'principle' which rules out parity-non- 
conserving spaces is analysed. The following result has been obtained: A local relativistic 
quantum field theory is parity-conserving if the following conditions hold : 

(a) The fields are derived from geometry, i.e. they are represented by quantised currents 
(in the sense of de Rham); and 

(b) The theory may be defined on a connected and, under certain restrictions, on a 
disconnected orientable space.time continuum M4o 

1. Introduction 

Invariance of the physical laws under space reflections is equivalent to 
the indiscernability of right and left. Such an equivalence would entail 
the non-existence of any internal physical or geometrical structure which 
would permit an absolute distinction between right- and left-handed 
coordinate systems to be made. However, there exist experiments, such as 
the circular polarisation of electrons emitted in/3-decay, which give strong 
evidence for a certain handedness. This kind of asymmetrical phenomenon 
does not imply, however, the failure of the geometrical equivalence of 
right and left. One would rather have to conjecture a certain 'screw-sense' 
in the dynamical laws. The question whether it is the geometry or the 
dynamical law that must have a 'twisted' structure may be analyzed by 
means of the following example: A magnetic needle placed below a current- 
carrying wire will be deflected in a certain sense, according to Amp6re's 

�9 corkscrew-rule. But this rule, also referred to as right-hand rule, makes 
strictly no sense if one does not admit a universal 'right' and 'left'. Mathe- 
matically this means that the underlying three-manifold must be oriented 
(refer to Section 3). Otherwise stated: It would be the geometry which 

f" On leave of absence from: University Miinster, Germany. 
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would not be 'twisted', i.e. endowed with any screw-like structure. (Twisted 
structures are, for instance, provided by the so-called M6bius strip or the 
Klein bottle.) 

On the other hand, the electromagnetic field is characterised, within a 
relativistic framework, by the two-form (refer to Section 3) 

o~ = E F.v dx" dx~ 
ia,P 

F,.(x)  = 0 -H3  Hz . F.v = - F . .  
0 --Hi ' 

Since this form represents a polar and an axial vector, the underlying four- 
dimensional space-time continuum need not necessarily be orientable. 
However, the above-mentioned experiment of ]3-decay indicates that one 
has to expect the universe to be orientable. Indeed, the probability of 
electron-emission is greater for one of the two half-spaces, defined by a 
plane, which is perpendicular with respect to the axis of rotation. Such a 
phenomenon is obviously independent of any space orientation. Thus one 
may define some privileged orientation of this space. This space would have 
to be orientable. 

Wheeler (1962) has suggested that there might exist a 'principle' which 
rules out non-orientable or parity-non-conserving spaces. This problem 
will be analysed in the subsequent sections of this paper. 

2. Discussion o f  the Conventional Parity-Conserving Conditions 

Our goal is to approach a geometrical quantum field theory in the sense 
of Wheeler & Misner (1957), where the elementary partMes, i.e. the 
quantum fields, are considered to be derived from geometry and not to be 
added to geometry. We exhibit in this section the set-up of the parity- 
conserving conditions within the framework of a conventional quantum 
field theory. These will be transcribed in our subsequent Section 5, into an 
appropriate geometrical language. 

Let ~bl(x) ..... q}.(x) and 7*l(x) ..... W,.(x) be selfadjoint Bose-Einstein 
and Fermi-Dirac fields respectively which are supposed to satisfy the 
following canonical equal-time commutation and anti-commutation rules 
(together with the correct connection of spin and statistics): 

[~(x), 7*(x')]+~o=xo, = [q'(x), g'(x')l+~o=xo, = 0 
[~(x), g'(x')]+~o=~o, = ~,o a(x - x') 

[~(x), ~-x~O (x')J_xo=x ~ = ihc a(x - x') x =  (x ~ x)(2.1) 

[~g(x), ~(x')]_~o=~o, = [g '(x),  ~(x')l_~o~xo, = 0 
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A quantum field theory which is described by these rules may be charac- 
terised to be space-inversion invariant by means of the following: 

Definition 1 : A theory of type (2.1) is said to be invariant under a space- 
inversion P ~ L ~_ if there exists a unitary operator U(P) such that conditions 
(2.2)-(2.4) hold: 

U ( P ) q5(4) U (P ) -a = q~[(0,P) 41 (2.2) 

U(P) 7-t(4) U(P)-' = +yo k~[(0,P) 4] (2.3a) 

where 

and 

t ' :  (x ~ x) -+ (x ~ 

(o , e )  4(x) = 4(e-1 x) = 4(x~ 

f dx4(x) q~(x) (2.3b) q~(4) 

f dx4(x) N(x) (2.3c) 

are the fields ~b(x) and W(x) which are averaged with testing functions 

[U(P), HI  = 0 4 s N = {4lsupp 4 : compact 4 e C ~ (2.4) 

Remark 1 : The transformation law 

W (x) -+ _~o 7t (px) (2.3'a) 

for spin fields is just as good a definition of the parity operation as (2.3a). 
Indeed: if U(P) is the transformation which produces the first choice, 

then U(R) U(P) will produce the second, if R ~ S0(3) rotates through an 
angle 2~r. A permissible choice for ~o is 

0) 
Remark 2: Since fields in a single point are not observable as stressed by 
Bohr & Rosenfeld (1933), only averaged field operators are well-defined, 
i.e. more precisely than their corresponding Wightman distributions. 

Remark 3: Relation (2.4) is to be understood in the sense that, even though 
one upholds the intrinsic geometrical equivalence of right and left, one 
cannot reduce all the concepts, which are related to a dynamical law, to 
geometrical notions. Our subsequent discussion of the equation [H, U(P)] = 
0 in Section 6 provides the dynamical feature of the fact that the theory 
cannot distinguish between left and right. This dynamical feature originates 
from the fact that the selfadjoint operator H, commonly referred to as the 

21 
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dynamical operator, provides the information on the time-development of  
a system, through 

qO(x) = exp (iHx ~ ~(x) exp ( - i H x  ~ (2.5) 

Remark 4: Since we shall be dealing in Section 4 with fields which are 
derived from geometry, statements about coupling constants within such a 
framework are devoid of any meaning, as stressed by Wheeler (1962). 
Therefore one gets into difficulties by considering Hamiltonians, such as 

H =  H(gx , . . . ,go)  gk : coupling constants (2.6) 

We shall circumvent these difficulties by adopting the following point of 
view. 

Instead of making the interaction responsible for P-violation, one may 
assume that space-inversion invariance does not hold already for free 
neutrinos (the above-mentioned fields W(x) are then to be considered as 
Weyl fields). This screw character of the Weyl neutrino is readily shown to 
imply parity violation in fl-decay and other processes quite irrespective of 
the form of interaction. Therefore our subsequent reasonings will hold 
for any type of interacting quantum field theory. Instead of discussing 
P-violation within the framework of interacting fields, one may, by virtue 
of the aforementioned facts, base this discussion on the asymptotic free 
fields 

~ , ,  (x )=  lim ~(x)  (2.7) 
OUt t ~ o O  

We shall make use of this possibility. 

3. The Basic Set-Up 

Let M = M 4 be a differentiable manifold of dimension 4 and class C ~, 
which represents the space-time continuum. M 4 is supposed to be endowed 
with a pseudo-Riemannian structure whose metric ds 2 =g,v (x~)dx"dx  ~ 
((x~': /z=0,1,2,3) denote the admissible local coordinates) is of the 
hyperbolic normal type. Special relativity is taken into account by the 
introduction of the principal fibre bundle E(M 4) over the base space M 4. 
This fibre bundle is defined as follows: 

E(M 4) = {(X, px) : x ~ M 4} (3.1) 

With respect to a set of orthonormalised frames P- which characterise also 
E(M4), the metric can be written on an open neighbourhood of M4: 

ds2 = g . v  0r  0 v = (00) 2 - ~ (0k)2 (3.2) 
k 

where the O k denote Pfaffians. The structural group of E(M 4) is the complete 
homogeneous Lorentz group {(0, A)}. 
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An orientation, i.e. a total orientation of  M 4 (this total orientation 
appears to be the product of a spatial and time orientation) is a pseudo- 
scalar r of  square 1. I f  the manifold M 4 is orientable, such a geometrical 
object exists and is defined by one component:  r = T1. 

The following definition makes this more precise: 

Definition 2: A continuous system of orientations of M 4 is a continuous 
function 

E : x ~ { - 1 ,  + 1 }  V x  e M 4 (3 .3)  

That  is: E(x) is continuous in x ~ M implies this function to be constant in 
some neighbourhood U(x) ofx .  Definition (2.2) can be made more explicit 
as follows: Let (U, O) be a local chart o f M  4 and DO(x)  - W ( x )  the Fr6chet 
derivative in x ~ U. The Isomorphism 

DO(x)  : T~,(M) --> R" (in our case  R 4) (3.4) 

i.e. 
(e, . . . . .  e,) "---> (DO(x) -1 e, . . . .  , DO(x)  -1 e,) 

which are ordered bases in R" and Tx respectively provides a canonical 
correspondence between the classes of bases of  R 4 and Tx(M).  One has: 

E(x, O) :=  ~(x) = +1 

if O establishes a correspondence between a positive (negative) class of 
bases of R 4 with a positive (negative) class of  bases of  Tx(M).  

~(x) = - 1  

if  O establishes a correspondence between classes of bases of  opposite signs. 
Thus one can give the following: 

Definition 3: The manifold M 4 is said to be orientable if it possesses at least 
one continuous system of orientations. Furthermore, M 4 is oriented if one 
chooses one system of orientations. 

This definition can easily be shown to be equivalent to the classical definition 
of orientability, which states: 

Definition 3' : A differentiable manifold M" is said to be orientable if there 
exists an atlas (Ui,O~)i~ such that, for each intersection U~ N U i of local 
charts, one has 

dx  I A . . .  ^ dx  n = J d x  1' ^ . . .  A dx"" (3.6i 

where d = det (Oxi/Ox J') > O. 

In order to re-express a quantum field theory in a purely geometrical 
manner, we make use of a calculus of  quantised differential forms (Section 
4), which has been extensively studied by Segal (1968) and Lichnerowicz 
(1964), thus extending the conventional theory of differential forms as 
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outlined below. The motivation of such a programme is that the calculus of  
exteriordifferential forms, already in its conventional framework, provides 
a much deeper insight into geometrical and physical laws than tensor 
methods. This has been displayed in a fundamental paper by Wheeler & 
Misner (1957), in which exterior forms provide an adequate framework 
for classical physics. Further applications of  exterior forms in classical 
physics are exhibited in the book of Mme. Choquet-Bruhat (1968) as well 
as by Flanders (1963) and yon Westenholz (1970). 

We introduce two classes of  exterior forms: the normal or even ones and 
the twisted or odd differential forms. The general set-up for these forms is 
the following: 

Let M be a differentiable manifold of  class k/> 1 and dimension n. A 
differentiable form of  degree p on M is a differentiable cross-section co of  
class C ~ (l < k - 1) of  the exterior fibre bundle 

A P ( M )  = U AP(Tx *) (3.7) 
x E M  

over M, which represents a differentiable manifold of  class k - 1. 
Here, M denotes the base space and AP(T~, *) the fibres endowed with the 

natural differentiable structure C k-l, in particular, AI(T~  *) := Tx* denotes 
the dual space of the tangent space Tx at x E M and A~ *) = R. Thus a 
differential form co of  degree p and class C ~ may also be characterised as 
an element 

co : x -+ co(x) ~ AP(T~ *) (3.8) 

whose local representation is given by 

r = ~.. aq . . . . .  ~p dxq  . . . dxip (3.9) 
i i  < . . .  < i p  

We define addition and exterior multiplication of exterior polynomials 
according to the formulas 

(co + co') (x) = co(x) + co'(x) (3.10a) 

(co ̂  co') (x) = co(x) A co'(x) (3.10b) 

(3.10b) is a bilinear, associative and anti-commutative operation, i.e., if 
co 6 F p and co' ~ F q, then 

co ̂  co' = (-1)pq co ' ^ co (3.11) 

is valid. Endowed with this law, one defines the following graded module: 

F =  F o @ F  1 @ . . .  @ r n (3.12) 

Our next task is to associate differential forms with non-orientable mani- 
folds. According to de Rham (1960), the most natural tools related to this 
class of  manifolds are the so-called twisted differential forms. These may 
be characterised as follows: 
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Let 31~ be the canonically oriented two-sheeted covering space of M: 

3~ r -- {(x, E)Ix 6 M; a one of the two possible orientations of Tx in x e M} 

(3.13) 

Thus, to each point x ~ M, there correspond two points of  3~r: (x,+ e) and 
(x,-E) (see figure). Otherwise stated: 3f/is a fibre bundle, consisting of the 
base-space M, the covering projection 

9 ' :  ~ - + M  

and a fibre over each point x e M, which is canonically isomorphic to the 
two-element set consisting of  the orientations of Tx at this point, 

(X, 6 } (y,-  e) 

[(v, e) l*, 
1 
i 

. . . . . .  * J" M 
x Y 

Let rr denote the permutation-map of the two sheets: 

~: ~ - + ~ r  
(3.14) 

(x, ~: ~) -+ (x,~:,)  

This mapping of the differentiable manifold ~ into itself induces a mapping 
rr* of the modules of exterior p-forms on _~r: 

~*: Fp(a~) -+ FP(a~) 
(3.15) 

`5-+`5'  

Therefore, a twisted exterior form to on M is defined by the following 
property of the corresponding form `5 on ~ :  

~r* ̀ 5 = -`5 (3.16) 

whereas a normal exterior form co e FP(M) is referred to as being invariant 
under the automorphism ~r*, i.e. 

rr* ,5 = `5 ; `5 s F"(/ff), `5 = ~ *  ,,, 
(3.17) 

7/*: FP(M) -+ {`5 ~ F ( ~ )  : 7r* ̀ 5 = `5} 
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Since twisted forms are defined on orientable as well as non-orientable 
manifolds (de Rham, 1960), the integral 

f to = �89 f ~ (3.18) 
M n7 

always makes sense. On the contrary, if M is non-orientable, one has, by 
definition, 

f w  = (3. 9) 0 1 
M 

since normal exterior forms are only defined on orientable manifolds. 
Finally, we introduce the notion of a current in the sense of de Rham 

(1960): Consider again some n-manifold. A linear and continuous func- 
tional T(~) on the vector space of all even (n-p) - forms (Schwartz, 1957) 

~"-p = {q~ E C ~ [supp 5b : compact} (3.20) 

is called a twisted p-current ~ ~P'. Let ~"-P be the vector space of twisted 
(n-p)-forms.  A linear continuous functional T~ ~P' on N"-P is called a 
normal current. A classification of normal and twisted currents is of interest 
with respect to quantized differential forms (Section 4) and will be given 
there. 

4. Local Quantised Differential Forms 

The following characterisation of local quantised differential forms is 
similar to that given by Segal (1968). It extends the notion of conventional 
differential form in a fashion, bringing it in close relation to the algebra of 
operators on the manifold M 4. 

Definition 4: A quantised differential form over M 4 of degree p < 4 is an 
alternatingp-mapping M 4 into> ~qo(jto 3/g~), the algebra of linear operators 
on the Hilbert space ~ .  

Thus the local representation (3.9) may be generalised as follows: 

~o = 7 ,  - , t i ,  . . . . .  ~ , ( x )  d x  ~' A . . . A d x  ~, 
i l < . . .  <ip 

(4.1) 

where 
Aq . . . . .  ip(x) = A(x, eq . . . .  , e~p) 

(4.2) 
= : A  

represents a tensor operator ~ ~'(3(F, ~ )  Vp-tuple (il, . . . ,  ip). 
In a framework of local quantised differential forms, formula (3.11) 

must be replaced by relation (4.3) according to 
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L e m m a  1 

Let co and co' be two quantised differential forms. These forms satisfy 
relationship (3.11) if and only if the tensor operator coefficients (4.2) 
commute, i.e. 

co ^ c o ' =  ( - ) P q c o ' ^  co ~ JAil  . . . . .  i ~ , ~ j ,  . . . . .  sv] = 0 

V(ia,...,iv) and V( j l , . . . ,  jq) (4.3) 

(in shorthand notation: [ A , B  ] = 0). 

Proof :  Let 

Therefore 

c o =  

i l <  . . .  < i  v 

t o t  E 
Jx < �9 �9 �9 <J,~ 

Aix . . . . .  iv d x  q A . . .  A (Ix iv 

Bs~ . . . . .  s~ dxq  ^ " "  ^ dxs~ 

co^  c o t  E ~ A i  1 . . . . .  ' nJ  1 . . . . .  Jq d x i l ' ' ' d X i p d x j l ' ' ' d x j q  
i l <  . . .  < i p  j l  < . . .  <jq 

co' ^ co = ~ ~ Bj ,  . . . . .  jq A q  . . . . .  i, dx  ix . . .  d xq  d x S ' . . ,  dxS" 
11< . . .  < i p  j l < . . .  < j ~  

= (-1) pq Z Z Bsl . . . . .  s~ Ail  . . . . .  ip d x i ~ . . ,  dx  iv d x S l . . ,  dx  s' 

= ( - 1 ) v .  co ^ co' 

iff A q  . . . . .  iv Bsl . . . . .  s~ = Bsl . . . . .  s~ A q  . . . . .  ip 

In order to take into account spin and statistics as well as to re-state the 
commutations relations (2.1) in terms of quantised exterior forms, we have 
to classify tensor- and spinor-exterior forms fields. This can be readily done 
in agreement with Lichnerowicz (1964) and according to formula (4.2): 

I: Scalar f ields: These are quantised 0-forms ~ F~ 4) ~ o ,  that is, 
simply operators ~ ~(3~,3(F). 

H: Tensor f ields: These are given by the quantised forms co, co'.., whose 
coefficients are the tensor operators (4.2). 

111: Spinor f ields: According to Lichnerowicz (1964), the classical spin 
fields may be obtained as follows: 

Let FU(M 4) be the module of exterior forms over M 4 and S(M 4) be the 
module of spinors over  M 4. Then there exists a module-isomorphism i 

p 

between these modules, which assigns to each homogeneous p-form co a 
spinor as follows: 

4 

p=o 2-i7''' " " e '  " ' 7 " a q  . . . . .  ip = v=0 ioJ (4.4) 
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i.e. p 
~ = i t o  w = ~ w  

inhomogeneous form, where 

(4.5) 

P 

W.O= a q  . . .  i~, d x q  �9 �9 �9 d x i p  

i1< . . .  < i p  

7 ~ are the anti-Hermitean 4 • 4 complex Dirac matrices (i = 0,1,2,3) 
which satisfy the commutation rule 7~7 J + 7~7 ~ = 2g~JL The spinor forms 
(4.4) may be quantised in a straightforward manner. 

The generalisation of  the averaged fields (2.3b) and (2.3c) is obtained 
by the use of  operator-valued currents and 

Lemma 2 

There exist operator-valued currents on M 4 which are formally defined 
as 

co(~b) = f o~ ̂  t~ (4.6) 

where ~o(x)s ~ a ( ~ ,  jto) and ~b ~ ~p. They constitute a generalisation of  
the averaged quantised fields of the type T(~) = fa, d4x~(X) T(x)  (which 
stands for (2.3b-c)), where q~ ~ ~ and T(x)  ~ ~(J/t~162 

Remark  5: The operator-valued currents (4.6) constitute averaged quantised 
forms. They make sense only in a framework of  generalised Wightman 
Distributions (4.7) W ( ~ ) =  (~b, to(~)Tt), since only for these does one 
have the property of  continuity, i.e. : 

,I , .  - +  0 ~ W( , l , . )  - +  0 r  ~ ~ .  (4.7) 

which in turn generalise the de Rham currents (de Rham (1960). 

Proof  o f  Lemma 2: We have to show that, if M 4 =  R 4, w ~ ~n'  (quantised 
~o ~ S e ( ~ , ~ ) )  and (~ ~ o ,  ~o(~) becomes identical with T((~). Since 
R 4 is oriented, ~k  and ~ are isomorphic Vk. Therefore we may choose 
fields of the form (4.6) which have the properties 

~(A~) = .~a~(~), w(dp, + ~2) = co(dp,) + r (4.8) 

and 

oJ(dp) = f dx j~ . . . . .  dx  j.-k ^ dx q ^ . . .  h dx ~ efiq . . . . .  ~(x) toil, .... j,_k(x) (4.9) 

which is the representation of  (4.6) in local coordinates. In particular, if 
q~ ~ ~ o ~  ~ o  is a testing function with compact support and n = 4, this 
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yields: to is a four-operator-valued current, i.e. to = too .. . . .  3(x)dx  ~  �9  dx  3 
where to 0 ..... 3(x) e oW(~, a~), and therefore 

,o(,I,) = to(r = .I d x r 1 7 6  "' x 3 ) ' ~  . . . . .  3(x)  d x  = d x  ~ ̂ . . .  A dx  3 

( 4 . 1 0 )  

Formula (4.10) represents the conventional quantum fields. 

R e m a r k  6: From formula (4.10) and remark 5, we infer that the physically 
correct operator-valued currents are given by 

W ( c ~ ) = ( ~ , t o ( r ~ )  V J ) =  f c ~ ( x ) ( ~ , W o  . . . . .  3(x) tr-d-t)dx ~ E ~ ~ (4.11) 

where 

and 

= ~0 ..... 3(x) dx 0 A . . .  A dx  3 ~ F4(M 4) 

~g = Wo ... . .  3(x) dx  ~ ^ . . .  ^ dx  3 E F4(M 4) 

Ip', = COo ... . .  3(x) I/ /= co 0 .. . . .  3(x) tp'0 .. . . .  3 ( x ) d x O . . . d x  3 

= 5g~ . . . . .  3 dx~ . . . .  , dx3 ff F4(M 4) 

Formula (4.11) necessitates the introduction of a Hilbert space of four- 
forms (de Rham, 1960; Schwartz, 1957) endowed with the scalar product 

Y,,) = f f f (4.12) 

which has the properties: 
(~, ~,,) = (~,,  r  

( r162 

and (~b, ~b) = 0 if and only if r = 0. 
5 U'* ~ F~ 4) denotes the so-called adjoint form of  W (de Rham, 1960). 

This Hilbert space admits the usual Fock space concepts such as the vacuum- 
state, represented by a constant function 1 which is an 0-form, creation-, 
annihilation and total number of particles-operator, etc., as exhibited by 
Souriau (1964). 

The generalisation of (4.11) to any form r s ~P  is straightforward but 
will not be needed in our further discussion. 

R e m a r k  7: Besides expression (4.6) for to(~), twisted operator-valued 
currents such as 

f ~ ^ r (4.6') to(C) 

could have been considered. However, this class of operator-valued currents 
does not provide an admissible generalisation of the conventional 'smeared' 
quantum fields. Indeed, these currents are defined by 'twisted operators' 
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to~. j (x) ~ ~4~(~, 3r ~) which obviously have no physical meaning. 
1 '  " " " :  . ~ - - p  

As an illustrative example of this point, the quantised Maxwell field form 
~o = ~ F~(x)dx~ dx ~ accounts for this. Indeed, it defines a normal operator- 
valued current on R 4. 

5. The Geometric Structure of a Parity-Conserving Theory 

We are now able to analyse Wheeler's question as to whether 'parity- 
conserving spaces' are ruled out by any principle. Sufficient conditions for 
parity-conserving spaces are provided by the following 

Theorem 
Consider a local relativistic quantum field theory. This theory is parity- 

conserving if the following conditions hold: 

(a) Its fields are derived from geometry, i.e. are represented by quantised 
currents (in the sense of de Rham), and 

(b) The theory is defined on a connected orientable differentiable mani- 
fold M 4. 

Proof: Let/~r be the covering space (3.13). We define on ]~r the following 
parity-orientation operator 

f f : ( x , , ) - + ( x ' , e ' ) - ( x ~  e,e' fixed (5.1) 

which is induced by the space-inversion symmetry P. (This re-definition 
of the parity operator is indispensable, since statements involving the 
orientation must obviously be related to 3~r.) In particular, if M admits 
some orientation function of the type (3.5): E(x, qb)~e~(x)~{--1,+1}, 
which is associated with the atlas {(Ui,~)}~x on M, P maps e~(x) into 
~j(x'). 

However, since in each point of M 4 the tangent space Tx is endowed 
with two orientations E = 1 and E = -1,  P splits into the following opera- 
tors: 

P+: (x,+l) -+ (x', +l) 
(5.2) 

(x,-1) ~ (x',-1) 

and 
P - :  (x, +1) ~ (x', -1)  

(5.3) 
(x,-1) ~ (x', +1) 

where x =  (x~ and x ' =  (x~ That is, _P+ carries the orientation 
associated with (x ~ x) into the image point (x ~ and analogously i f -  
reverses the orientations when mapping (x ~ x) into (x ~ 

Thus we may replace equations (2.2)-(2.3) by the subsequent geometrical 
conditions (5.4)-(5.5). (We shall discuss only the case of a scalar field, 
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since the space-inversion invariance condition does not affect the principle 
in the case of  spinor fields.) 

U(ff +) ~(~) U(ff +)-~ = 6 [(0, ff +) ~1 (5.4) 

f ( /~ - )  (.~1(~) f ( /~ - )  -1 = ~[(0, / ~-) ~] (5.5) 

where ~5 and ~ denote forms on 2~r4. Indeed, by virtue of (3.18) and (4.6), 
statements concerning forms o n  M 4 can be enunciated equivalently on 
/f/4. Equations (5.4) and (5.5) must be supplemented by the following 

Condition A 

The quantised operator-valued currents c5[(0,/~+)~] and ~5[(0,P-)~] 
are identical. 

Therefore, (5.4) and (5.5) are both given by the same expression 

= + f (5.6) 

where 25 - (x, + e) and -2 5  = (x , -x ,  + e). 
The motivation of this condition is clear. Non-agreement of the fields 

(5.4) and (5.5) would lead to contradiction with the uniquely defined parity 
transformation law (2.3a) of scalar fields. This amounts to saying that the 
action of  the unitary operators U(P +) and U(P-)  on ~(~) must be the 
same up to unitary equivalence. The expressions (5.4)-(5.5) together with 
condition A are equivalent to the properties (2.2) and (2.3). Indeed, the 
quantised differential form fields have been shown (according to Lemma 2) 
to generalise the averaged quantum fields of  the type (2.3b) and (2.3c). 
These fields, defined on M, are either 7r-invariant (normal fields) or ~--anti- 
invariant (twisted fields) on/Q.  Thus the alleged equivalence is obtained 
if and only i f f f  is defined, according to (5.1), on elements (x~ ~ .  

According to Section 4, four different types of averaged quantum fields 
may be defined on M. Two types of even quantised forms are available if 
and only if M is orientable, namely, ,-o(4 ) and r may be defined on 
some differentiable manifold which is orientable or not. By virtue of 
Section 4, fields of the type r ) are not suitable. For similar reasons (refer 
to remark 7) 'normal' forms of the type ~ ( ~ )  on oriented manifolds are 
to be rejected. Note that fields of the kind o)(4) do not fit either, since oJ 
and 4, having the same parity, do not define any current at all. This applies 
also to some of the aforementioned fields. Therefore, the only type of 
current to be considered is co(q~). These currents are defined on orientable 
as well as non-orientable manifolds. 

The behaviour under the parity-orientation operators P-+ of  the only 
admissible fields w(q~) is exhibited by 

[(0, P = f (5.7) 
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and 

+ P - )  = f 

= - f (5.8) 

(The change in sign in (5.7) and (5.8) is due to 0 being a twisted 0-form.) 

Lemma 3 
Let M 4 be a connected C~-manifold (k > 1) and let/~f4 be its covering 

space. I f  P - ,  defined by (5.3), exists on 3~f 4, then M 4 cannot be orientable. 

The proof  of  this Lemma is based on the following: 

Lemma 4 
I f  a manifold M" is connected, two continuous systems of  orientations 

have either the same or the opposite sign on the whole manifold. 

Proof of Lemma 4: Let El(X) and E2(X ) be two continuous orientation 
functions and set: 

q (x)  
q (x)  - - -  - q (x)  E2(x) Vx s m 

E2(X) 

E3 being a third continuous orientation function, it takes its values in 
{+1,-1}, thus 

E3 "1 " {1,-1} ~ M 

and, by virtue of the continuity of  E3, E~ l maps open (closed) sets in open 
(closed) sets. NOW {+1} is closed, but also open, since C{l, _u{1} = {--1} is 
closed. Therefore e~ (+ l )  c M is closed and open at the same time. Since 
M is connected, the only open and closed sets of  M are ~ and M itself. 
Therefore: 

(a) If  
%1(+1) = M ~ e3(x) = +1 Vx ~ M 

q(x)  and E2(x) 

both have the same sign: Vx ~ M; or 

(b) I f  
E ~ I ( + I )  = ~ =~ ~ x e M  

such that e3(x) = +1 but: 

~3 : M --> {+1,-1} ~ E3(x) = -1  

have opposite signs: Vx ~ M. 
This achieves the proof. 

V x ~ M  

q(x)  and E2(x) 

The same reasoning holds for e~l(-1). 
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Now we can proceed to the 
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Proof of Lemma 3: Proof by contradiction. Let M be orientable, then 
Lemma 4 yields: 

M is connected and orientable 

(3El ,  E2) (VX ~ M) : El(X) = +1 and E2(X ) = -1  (5.9) 

Now: (5.3) i f - :  (x , •  means e(x)=-e(x ' ) ,  V orientation 
system ~; thus (5.10) holds also for the two special continuous orientation 
systems E1 and e2: 

El(x ) = +1 El(x') = -1  

e2(x) = -1 E2(x') = +1 

This obviously contradicts (5.9). 
By virtue of Lemma 3, one has to distinguish between the following two 

cases: 

(a) On a connected orientable manifold, the operator P -  may not be 
defined, thus condition (5.5) becomes meaningless. Therefore the 
field w(d~) can only transform according to P+, which, according to 
(5.4), ensures parity-conservation. 

(b) On a connected non-orientable manifold, the parity is violated, since 
condition A cannot be satisfied by the field oJ[P-~]. 

This achieves the proof of the theorem. 

Corollary 
Let M be an orientable disconnected manifold, such that the connected 

components M~ form a partition of M, i.e. 

M =  U Mt (5.10) 
i~l 

If  condition 
(Vi) (qx~ = (x~ ~ xi) ~ Mi) : (xi ~ -xl)  ~ M~ (5.11) 

holds, then the parity is conserved for fields defined on M. 

Proof: If  condition (5.11) holds, then, by virtue of Lemma 3, the operator 
P -  may not be defined on the covering spaces kTr~ of the connected com- 
ponents Mi, since, for at least one xi ~ M~, this operator is in contradiction 
with the orientability of M~. This yields that i f -  cannot be defined on M, 
which in turn entails the condition (5.5) of parity invariance to be invalidated. 

6. Concluding Remarks 

Remark 8: The proof of the main theorem has been achieved on purely 
geometrical considerations. No use has been made of the explicit form of 
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the Hamiltonian functional H, nor had the dynamical invariance property 
(2.4) [H, U(P)] = 0 to be taken into account in proving the theorem. 
Indeed, within a non-geometric framework of  a quantum field theory, 
condition (2.4) is actually necessary to determine the matrix elements of 
the dynamical operator H (together with the operator equation of motion, 
[H, q~(q~)] = -iq~(q~), the Hermiticity of  H and the spectrum normalisation 
condition H~2 = 0). 

Thus it appears clear that, if the geometry is suitably chosen, the break- 
down of the space-inversion symmetry P can only be due to the dynamics. 
Therefore, only the non-fulfilment of  the dynamical invariance postulate 
(2.4) yields parity non-conservation. 

Remark  9: Condition (b) of the theorem is always satisfied in the case of a 
conventional local relativistic quantum field theory, since such a theory is 
defined o n  R 4. However, in order to obtain a P-invariant theory, the concept 
of field has to be modified according to condition (a) of the theorem. A 
closer inspection of the proof  of our theorem displays furthermore that the 
orientability of the manifold constitutes a major argument. This point is 
entirely neglected within the framework of a conventional quantum field 
theory, where this property of the underlying universe is not exploited at all. 
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